指数平滑法是一种比较常用的时间序列预测法。其原理是任一期的指数平滑值是本期实际观察值与前一期指数平滑值的加权平均,这种方法融合了新旧价值信息,赋予较新信息更大的权重。
这样做的重要意义是,因为预测上,越接近现在的信息越比较可信,而越远的信息,历史陈旧则可信程度没有那么充足。指数平滑法就是抓住这个特点,赋予最新的数据较高的权重,而其他数据随着时间的增加,其权重也随之降低。
一般来说,当时间序列数据呈稳定的水平趋势时,选择较小的α值,为0.05到0.2之间;当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间;当时间序列数据波动很大,长期趋势变化幅度较大,是明显且迅速的上升或下降趋势时,宜选择较大的α值,可在0.6-0.8之间,以使模型灵敏度高些,迅速跟上数据的变化;当时间序列数据是上升(或下降)的发展趋势,a应取较大的值,在0.6-1之间。
比如有以下13期的实际需求数据
通过图例,实际需求还是比较稳定,因此初始α值选择0.2。而第0期的预测值为21054,通过一次指数平滑公式
得出结果如下:
尽管如此,这个0.2的值是否适合了,凭此计算出的预测值21021,是否也值得可信。
一般来说,为了让选择的α值适合,预测和实际之间的MAPE(Mean Absolute Percentage Error, 平均绝对百分比误差)要达到最优化。
因此,0.2的取值计算得出的MAPE为3.25%
规划求解可以帮忙我们求出适合的α值,让MAPE值最小。
但是规划求解有个缺陷,就是取值只能大于等于0,而指数平滑的α值应为0到1之间,因此规划求解即可取0也可以取值1,就是有点矛盾。当然要解决这个还是有办法的,但是不在本篇讨论中。
先看一下结果。约束计算下,如果α为0的时候,MAPE最小,为3.14%。这个情况下,下一期的预测值为21054。
不过如果初始期预测值为21706的时候,通过规划求解,可以得出MAPE在α值取值0.4左右的时候,为3.51%
那么,这情况下指数α可以考虑取值0.4来计算。从图例来看,取值0.4也比较符合这个特点:当时间序列数据有波动,但长期趋势变化不大,可选稍大的α值,常在0.1-0.4之间。
这是对指数选择的一个不错的方法。
智航飞购完成天使轮融资
1463 阅读美国对中国商品加征10%关税,对跨境电商的巨大冲击
1382 阅读800美元不再免税,T86清关作废,跨境小包何去何从?
1183 阅读SCOR模型:数字化时代供应链管理的航海图
1081 阅读白犀牛副总裁王瀚基:无人配送带来了哪些机遇与挑战?
953 阅读快递人2025愿望清单:涨派费、少罚款、交社保......
949 阅读传化智联:紧跟国家物流枢纽布局优化,助力现代物流体系建设
904 阅读突发!美国邮政停收中国内地和中国香港包裹,800美元免税取消,影响几何?
893 阅读物流职场人性真相:鹰鸽博弈下的生存法则
876 阅读“朝令夕改”!美国邮政恢复接收中国包裹
800 阅读